On vanishing inflection points of plane curves

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inflection Points on Real Plane Curves Having Many Pseudo-Lines

A pseudo-line of a real plane curve C is a global real branch of C(R) that is not homologically trivial in P(R). A geometrically integral real plane curve C of degree d has at most d− 2 pseudo-lines, provided that C is not a real projective line. Let C be a real plane curve of degree d having exactly d − 2 pseudo-lines. Suppose that the genus of the normalization of C is equal to d− 2. We show ...

متن کامل

Inflection points and singularities on C-curves

We show that all so-called C-curves are affine images of trochoids or sine curves and use this relation to investigate the occurrence of inflection points, cusps, and loops. The results are summarized in a shape diagram of C-Bézier curves, which is useful when using C-Bézier curves for curve and surface modeling.  2003 Elsevier B.V. All rights reserved.

متن کامل

Identification of inflection points and cusps on rational curves

Using homogeneous coordinates, a rational curve can be represented in a nonrational form. Based on such a nonrational representation of a curve, a simple method to identify inflection points and cusps on 2-D and 3-D rational curves is proposed. © 1997 Elsevier Science B.V.

متن کامل

Weierstrass Gap Sequence at Total Inflection Points of Nodal Plane Curves

C be the normalization of Γ . Let g = (d− 1)(d− 2) 2 − δ; the genus of C. We identify smooth points of Γ with the corresponding points on C. In particular, if P is a smooth point on Γ then the Weierstrass gap sequence at P is considered with respect to C. A smooth point P ∈ Γ is called an (e − 2)-inflection point if i(Γ, T ;P ) = e ≥ 3 where T is the tangent line to Γ at P (cf. Brieskorn–Knörre...

متن کامل

Singular Points of Plane Curves

ly isomorphic to (C×)r−1 × (C), and hence also to (S1)r−1 × (R), where r = |J | is the number of branches and k = δ(C)− r+1 = 1 2 (μ(C) + 1 − r). The construction of the Jacobian variety J(C̃) of the non-singular curve C̃ in the large is standard in algebraic geometry. There is also a notion of Jacobian of a singular curve C , defined e.g. in [85], which, like the other, is an abelian group. Ther...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annales de l’institut Fourier

سال: 2002

ISSN: 0373-0956

DOI: 10.5802/aif.1904